GUIDELINE

Pyloric Stenosis: Infantile Hypertrophic

Scope (Staff): Nursing and Medical Staff
Scope (Area): NICU KEMH, NICU PCH, NETS WA

Child Safe Organisation Statement of Commitment
CAHS commits to being a child safe organisation by applying the National Principles for Child Safe Organisations. This is a commitment to a strong culture supported by robust policies and procedures to reduce the likelihood of harm to children and young people.

This document should be read in conjunction with this disclaimer

Aim
To provide standardized management protocol for neonates with Infantile Hypertrophic Pyloric Stenosis (IHPS).

Risk
Neonates with IHPS may have severe acid-base abnormalities. Failure to prevent and/or manage these abnormalities may increase morbidities in neonates.

Background
IHPS is a disorder presenting in infants due to hypertrophy of the pylorus leading to partial or complete gastric outlet obstruction. The incidence is 2 to 3 per 1000 live births.

Etiology
- Unclear, considered multifactorial, family history (48% siblings have h/o IHPS)
- First born children (RR:1.23; 95% CI: 1.07-1.4)
- Male gender (M:F 4:1; RR:2.71; 95% CI:1.93-3.78), higher in preterm females
- Neonatal hypergastrinemia and increased gastric acidity
- Exposure to Erythromycin and Azithromycin in the first 6 weeks of life
- Formula fed> breast fed
- Maternal smoking (RR:1.75; 95% CI: 1.54-2), young maternal age
Co-morbid with congenital heart disease

Presentation

Classically infants present between 3 to 6 weeks of age. Occasionally they may present in the first 2 weeks or later than 6 weeks of age, especially in premature babies.

Recurrent vomiting soon after feeds. Typically, the vomiting is described as projectile, non-bilious and happens soon after feeds. The baby is generally very hungry and wants to feed despite recurrent vomiting. Some infants, rarely, can present with bilious vomiting. There may be weight loss and signs of dehydration on clinical examination. It is important to elicit history of wet nappies. Abdominal palpation may reveal the presence of an “olive mass” in the right upper quadrant but is less commonly seen now a days because of early diagnosis. A recent systematic review reported that palpation has limited sensitivity in diagnosing IHPS.

Blood gas findings

- Hypochloraemic metabolic alkalosis with hypokalaemia, not typical in preterm
- Measure urea and creatinine levels on admission. It will help when deciding commencement of potassium infusion.

Special consideration for prematurity: Premature babies with IHPS can present well before the infant even becomes a “term baby”. The characteristic projectile vomiting, VGP and metabolic alkalosis, and palpable pyloric olive (despite thin abdominal wall) are usually absent in preterm infants with IHPS. Hence early ultrasonogram and or complementary upper GI contrast study must be done to confirm or refute the presence of IHPS in a preterm.

Prolonged medical treatment associated with delayed diagnosis and malnutrition increase the postoperative complications and recovery time which is due to physiological immaturity of the organs and LBW of a preterm rather than IHPS. Early surgical intervention can decrease the morbidity and mortality. IHPS should always be considered in the differential diagnoses in a preterm with feed intolerance, GORD, or recurrent vomiting.

Diagnosis

Ultrasoundography is the diagnostic modality of choice, and it shows hypertrophied and elongated pylorus. (Figure 1a). Upper GI contrast (Fig 1b: string-sign) may be performed if ultrasonography is inconclusive or if associated gut anomalies are clinically suspected.
Immediate management

- Admit to hospital, NICU/Paediatrics ward based on age, gestation and weight criteria for admission.
- Keep nil by mouth.
 - Continuing feeding should be discussed with surgeons in case of equivocal diagnosis on ultrasound.
- Insert size 8F nasogastric tube and allow it to drain freely.
- Arrange an ultrasound of the abdomen: diagnostic modality of choice.
- If USG is inconclusive and clinical suspicion persists, upper GI contrast could be considered in consultation with surgeons (especially in preterm infants).
- Insert intravenous cannula. Send blood investigations - venous blood gas (VBG), UEC, FBC, Cross match.
- Measure urea and creatinine levels on admission. It will help when deciding commencement of potassium infusion.
- Start antibiotics consider differential diagnosis such as sepsis, UTI, volvulus, NEC especially in preterm infant, gastroesophageal reflux disease etc.
- Assess the degree of dehydration and fluid management:
 - Management of dehydration and metabolic alkalosis with fluid resuscitation (Refer to Figure 2)
 - The fluid management is generally guided by the severity of dehydration and the blood gases and electrolyte abnormality (Figure 2)
Nasogastric fluid losses should be replaced mL for mL every 4 hours with 0.9% Sodium Chloride.

Correct hypokalaemia if present (Refer to Figure 2). Ensure that urine output is adequate and creatinine levels are normal before commencing potassium infusion.

Monitor blood glucose levels, if <3 mmol/L, increase the glucose infusion rate.

Surgical management

- The definitive management of IHPS is Laparoscopic or open Ramstedt’s pyloromyotomy.

- It is preferable to correct alkalosis prior to surgery to decrease the risk of post-operative apnoea’s. Preferable pre-operative blood gases targets:

 - pH <7.45, Base excess <3, Bicarbonate < 26 mmol/L, Sodium >132 mmol/L, Chloride > 100 mmol/L and Potassium > 3.5 mmol/L, Blood glucose>3.5 mmol/L.

 Note: This may not be achievable in all cases and need to be considered in discussion with surgeons.

Post-operative care

- Monitor the baby for apnoea for at least 24 hours post-surgery.

- Cease antibiotics post-operatively unless otherwise specified.

- Some infants may have post-op Gastroesophageal reflux or vomiting which should be managed on case-to-case basis.

Post-operative feeding guide

Feeds can generally be started after 4 hours unless specified in the operation notes. Adjusting the IV fluid rate as oral feeds are tolerated.

Feeds are usually tolerated by 24 hours post operatively.

This is a guide only and will need to be adjusted if vomiting persists.

- Feeding:

 - Feeds can generally be started after 4 hours unless specified in the operation notes and post-operative instructions.

 - Adjusting the IV fluid rate as oral feeds are tolerated.

 - Start 2 or 3 hourly feed as per the gestation and weight of the baby.

 - Generally, all infant will tolerate starting feed at 5 ml 3 hourly feed

 - Grade up feeds 5ml every 3 hours.
Pyloric Stenosis: Infantile Hypertrophic

- Breast feeding can be commenced 3 hourly for 5 to 10 minutes in addition as per parental preferences.
- Transition to full breast feed gradually with the grading up of feeds.
- Full feeds can be graded as tolerated over 24 hours unless other concerns exist, requires clinician discretion. Majority will tolerate full feeds.
Nil by mouth
Pass NG tube – free drainage and hourly aspiration
Replace losses mL for mL with 0.9% NaCl

pH>7.45, BE > +3, HCO3 >28 mmol/L, Chlorides <98 mmol/L
(Metabolic Alkalosis)

Yes

0.9% Sodium Chloride bolus:
10-20 mL/kg over 30 minutes
Maintenance Fluid
150 – 180 mL/kg/day of
5% Glucose+0.9%NaCl
If hypokalaemia (K+ < 3.0 mmol/L), run a sideline of Potassium Chloride infusion as per guidelines for hypokalaemia.
Repeat CBG every 4 to 6 hours

No

If CBG Normalizes

Maintenance Fluid 120 ml/kg/day
5% Glucose+0.9%NaCl
If hypokalaemia (K+ < 3.0 mmol/L), run a sideline of Potassium Chloride infusion as per guidelines for hypokalaemia.
Repeat CBG every 6 to 8 hours

TPN should be avoided in the initial rehydration and stabilization phase

Fig 2: Management of Initial fluid resuscitation based on CBG results
Pyloric Stenosis: Infantile Hypertrophic

Related CAHS internal policies, procedures and guidelines

Neonatology Clinical Guidelines
- Post-Operative Care
- Pre-Operative Care

References

Useful resources

Laparoscopic Pyloromyotomy (child)
<table>
<thead>
<tr>
<th>Document Owner:</th>
<th>Neonatology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reviewer / Team:</td>
<td>Neonatology Coordinating Group / Surgical Services</td>
</tr>
<tr>
<td>Date First Issued:</td>
<td>December 2022</td>
</tr>
<tr>
<td>Last Reviewed:</td>
<td>December 2022</td>
</tr>
<tr>
<td>Amendment Dates:</td>
<td></td>
</tr>
<tr>
<td>Next Review Date:</td>
<td>December 2025</td>
</tr>
<tr>
<td>Approved by:</td>
<td>Neonatology Coordinating Group</td>
</tr>
<tr>
<td>Date:</td>
<td></td>
</tr>
<tr>
<td>Endorsed by:</td>
<td>Neonatology Coordinating Group</td>
</tr>
<tr>
<td>Date:</td>
<td>24th January 2023</td>
</tr>
<tr>
<td>Standards Applicable:</td>
<td>NSQHS Standards:</td>
</tr>
<tr>
<td></td>
<td>Child Safe Standards: 1, 10</td>
</tr>
</tbody>
</table>

Printed or personally saved electronic copies of this document are considered uncontrolled.